
Double implementation with partially honest agents�

Makoto Hagiwaray

August 9, 2017

Abstract

Theoretical studies usually assume that all agents only care about the outcome
obtained in the mechanism. In the standard setting, Maskin monotonicity is neces-
sary, and along with no veto power is su�cient for double implementation in Nash
equilibria and undominated Nash equilibria with at least three agents. However,
there are unanimous social choice correspondences failing the two conditions so that
the SCCs cannot be doubly implemented. In this paper, we assume that there are
some partially honest agents in the sense of Dutta and Sen[5]. As our main result,
we show that if at least two agents are partially honest, unanimity is su�cient for
double implementation with at least three agents. From this result, we derive a
number of positive corollaries in some problems.

JEL Classi�cation: C72, D71, D78
Key words: Partial honesty, Double implementation, Unanimity, Social choice cor-
respondence, Social responsibility

1 Introduction

The theory of mechanism design aims to identify a mechanism achieving a social goal
across a domain of agents' preferences. Theoretical studies usually assume that all agents
only care about the outcome obtained in the mechanism. On the other hand, experimental
studies observed that some agents have intrinsic preferences for honesty. For example,
Gneezy [7] and Hurkens and Kartik [10] reported that agents are one of two kinds: either
an agent will never lie, or an agent will lie whenever he prefers the outcome obtained
by lying over the outcome obtained by telling the truth. Following such experimental
observations, a bunch of studies discuss the issue of implementation when agents have
intrinsic preferences for honesty.
Dutta and Sen [5] construct a mechanism in which each agent reports a preference

pro�le and an outcome. Under their mechanism, Dutta and Sen[5] assume that some
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agent has a small intrinsic preference for telling the true preference pro�le whom they
call a partially honest agent. An agent is partially honest if he prefers reporting the true
preference pro�le whenever a lie does not allow him to obtain a more preferred outcome;
otherwise, he prefers to announce a message inducing a more preferred outcome. They
prove that if at least one agent is partially honest, then every social choice correspondence
(SCC) satisfying no veto power can be implemented in Nash equilibria with at least three
agents by their mechanism.1 Also, Kimya [17] establishes that if there are at least three
agents and all agents are partially honest, then every SCC satisfying unanimity can be
implemented in Nash equilibria with at least three agents by Dutta and Sen's mechanism.
He mentions that his result is still valid if at least two agents are partially honest.
For Dutta and Sen's mechanism, however, the set of undominated Nash equilibrium

outcomes may be strictly smaller than the set of Nash equilibrium outcomes.2 Thus,
Dutta and Sen's mechanism may not implement an SCC with partially honest agents if
agents use undominated strategies.
Is it su�cient to design a mechanism that implements an SCC in just undominated

Nash equilibria with partially honest agents? Our answer is negative because laboratory
evidence casts doubt on the assumption that agents adopt undominanted strategies. In
pivotal mechanism experiments in which for each agent, telling her true value is a dom-
inant strategy, Attiyeh et al. [1] and Kawagoe and Mori [16] observed that more than
half of subjects adopted weakly dominated strategies. Moreover, in second price auction
experiments in which for each agent, bidding her true value is a dominant strategy, Kagel
et al. [14], Kagel and Levin [13], and Harstad [9] observed that most bids did not reveal
true values. It was not obvious whether or not each agent adopted undominated strate-
gies. Thus, it is desirable to construct mechanisms that are applicable not only when
agents use undominanted strategies but also when they do not. On the other hand, as
Cason et al. [2] point out, the high rate of the observed undominanted strategy outcomes
were Nash equilibria in their experiments. Therefore, although subjects frequently played
Nash equilibria, there was no guarantee that they did not use weakly dominated strate-
gies. Then, we are concerned with the design of a mechanism that doubly implements an
SCC in Nash equilibria and undominated Nash equilibria with partially honest agents.
Previous studies show that if all agents only care about the outcome obtained in the

mechanism, Maskin monotonicity is necessary, and along with no veto power is su�cient
for double implementation in Nash equilibria and undominated Nash equilibria with at
least three agents (Jackson et al.[12], Tatamitani[26], and Yamato [27][28]). However,
there are unanimous social choice correspondences failing the two conditions so that the
SCCs cannot be doubly implemented. In this paper, we assume that there are some
partially honest agents in the sense of Dutta and Sen[5].3 We show that if at least one
agent is partially honest, no veto power is su�cient for double implementation with at

1Lombardi and Yoshihara [19] provide a characterization of implementation in Nash equilibria with
at least three agents if at least one agent is partially honest.

2Yamato[28] provides an example that in a mechanism used by Maskin[22], the set of undominated
Nash equilibrium outcomes may be strictly smaller than the set of Nash equilibrium outcomes. Also, we
can easily show that, in Dutta and Sen's mechanism, the set of undominated Nash equilibrium outcomes
may be strictly smaller than the set of Nash equilibrium outcomes even if two agents are partially honest.
See Yamato[28] and Example 4 of this paper.

3There are other de�nitions of preferences for honesty. For instance, see Corch�on and Herrero [3],
Lombardi and Yoshihara [20], Matsushima [21], and Mukherjee et al. [23].
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least three agents. Therefore, we no longer need Maskin monotonicity as a necessary
condition of double implementability. Moreover, we show that if at least two agents are
partially honest, unanimity is su�cient for double implementation with at least three
agents. Hence, more social choice correspondences can be doubly implemented if at least
two agents are partially honest since unanimity is weaker than no veto power.
To provide the practical value of our main results, we examine the double imple-

mentability in problems of allocating an in�nitely divisible resource, coalitional games,
general problems of one-to-one matching, and voting games. Since all SCCs considered in
Section 4 violate Maskin monotonicity, the SCCs cannot be doubly implemented in the
standard setting. On the other hand, the SCCs can be doubly implemented with partially
honest agents.
We have considered a truth-telling messages with regard to a preference pro�le follow-

ing Dutta and Sen [5] and used a complicated mechanism. On the other hand, motivated
by some studies (Gneezy[7], Hurkens and Kartik[10], Do�gan[4], and Matsushima[21]),
Hagiwara et al.[8] consider a truth-telling messages with regard to an outcome. Speci�-
cally, they assume that some agent has a small intrinsic preference for reporting a socially
desirable outcome whom they call a socially responsible agent. They design a simple
and natural mechanism for implementation in Nash equilibria with socially responsible
agents which they call the outcome mechanism. We show that if all agents are socially
responsible, then the outcome mechanism can doubly implement any single-valued SCC
satisfying unanimity with at least three agents. Therefore, in problems of Section 4, if an
SCC is single-valued, then the simple and natural mechanism can doubly implement the
SCC with socially responsible agents under Assumption n.
This paper is organized as follows. Section 2 presents notation including assumptions

on partially honest agents. Section 3 reports our main results about double implementa-
tion with partially honest agents and related literature. Section 4 discusses implications
for four problems. Section 5 reports a result about double implementation with socially re-
sponsible agents and related literature. Section 6 provides concluding remarks. Appendix
A includes the proof of Theorem 1 and Appendix B proposes the proof of Theorem 2.

2 Notation

Let A be the arbitrary set of outcomes and N = f1; :::; ng be the set of agents. Let
Ri be a preference ordering for agent i 2 N over A, whose asymmetric and symmetric
components are Pi and Ii, respectively. LetRi be the set of preference orderings admissible
for agent i 2 N . Let R = (R1; :::; Rn) be a preference pro�le and R = �i2NRi. Let
D = �i2NDi � R where Di � Ri for each i 2 N be a domain.
A social choice correspondence (SCC) is a mapping F : D � A that speci�es a non-

empty subset F (R) � A for each R 2 D. Given an SCC F , an outcome a 2 A is F -optimal
at R 2 D if a 2 F (R). An SCC F is single-valued if jF (R)j = 1.
A mechanism � consists of a pair (M; g) where M = �i2NMi, Mi is the message (or

strategy) space of agent i 2 N , and g : M �! A is the outcome function mapping each
message pro�le m 2M into an outcome g(m) 2 A.
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2.1 Assumptions on partially honest agents

The literature on mechanism design usually assumes that each agent only cares about
the outcome obtained in the mechanism. However, some recent studies assume that some
agents may have intrinsic preferences for honesty.
Dutta and Sen [5] construct a mechanism in which each agent reports a preference

pro�le and an outcome. Under their mechanism, Dutta and Sen[5] assume that some
agent has a small intrinsic preference for telling the true preference pro�le whom they
call a partially honest agent. An agent is partially honest if he prefers reporting the true
preference pro�le whenever a lie does not allow him to obtain a more preferred outcome;
otherwise, he prefers to announce a message inducing a more preferred outcome. Lombardi
and Yoshihara [19] extend Dutta and Sen's notion of partially honesty by introducing a
truth-telling correspondence for any mechanism. We follow Lombardi and Yoshihara [19].
Let an SCC F be given. For each i 2 N and each mechanism �, a truth-telling

correspondence T �i is a mapping T
�
i : D � Mi that speci�es a non-empty set of truth-

telling messages T �i (R) � Mi for each R 2 D. Given a mechanism �, a truth-telling
correspondence T �i , and R 2 D, we say that agent i 2 N behaves truthfully at m 2 M if
and only if mi 2 T �i (R).
If there are partially honest agents, we focus on mechanisms in which each agent

reports a preference pro�le and a supplemental message. For each agent i 2 N , the
message space of agent i 2 N consists of Mi = D � Si, where Si denotes the set of
supplemental messages. For each i 2 N , mi = (Ri; si) is a truth-telling message if and
only if Ri = R. Then, a truth-telling correspondence is de�ned by T �i (R) = fRg � Si for
each i 2 N and each R 2 D.
For each i 2 N , each R 2 D, each mechanism �, and each truth-telling correspondence

T �i , agent i's preference ordering %Ri overM at R 2 D, whose asymmetric and symmetric
components are �Ri and �Ri respectively, is de�ned below.

De�nition 1. An agent i 2 N is partially honest if for eachR 2 D and each (mi;m�i); (m
0
i;m�i) 2

M , the following properties hold:
(1) Ifmi 2 T �i (R),m0

i =2 T �i (R) and g(mi;m�i)Rig(m
0
i;m�i); then (mi;m�i) �Ri (m0

i;m�i).
(2) In all other cases, g(mi;m�i)Rig(m

0
i;m�i) if and only if (mi;m�i) %Ri (m0

i;m�i).

Since an agent who is not partially honest only cares about the outcomes obtained in
the mechanism, his preference ordering over M is straightforward to de�ne as follows:

De�nition 2. An agent i 2 N is not partially honest if for each R 2 D and each
(mi;m�i); (m

0
i;m�i) 2M , g(mi;m�i)Rig(m

0
i;m�i) if and only if (mi;m�i) %Ri (m0

i;m�i).

We consider the following assumptions:
Assumption 0. There is no partially honest agent in N .
Assumption 1. There exists at least one partially honest agent in N .
Assumption 2. There are at least two partially honest agents in N .4

4The traditional literature on mechanism design such as Yamato[28] usually studies Assumption 0. In
contrast to the traditional literature, Dutta and Sen [5] and Lombardi and Yoshihara [18] [19] investigate
Assumption 1. Moreover, Hagiwara et al.[8] consider Assumption 2.

4



We introduce our formal de�nitions of double implementation with partially honest
agents under Assumption k 2 f1; 2g. For each k 2 f1; 2g, let Hk = fS � N : jSj � kg.
For each R 2 D and each H 2 Hk, let %R;H= (%R;H1 ; :::;%R;Hn ) be the preference pro�le
over M such that for each i 2 H, %R;Hi is de�ned by De�nition 1 and for each i 2 NnH,
%R;Hi is de�ned by De�nition 2.
Let (�; (T �i )i2N ;%R;H) be a game with partially honest agents induced by a mech-

anism �, a truth-telling correspondence T �i for each i 2 N , and a preference pro�le
%R;H . A message pro�le m 2 M is a Nash equilibrium in (�; (T �i )i2N ;%R;H) if for
each i 2 N and each m0

i 2 Mi, (mi;m�i) %R;Hi (m0
i;m�i). The set of Nash equilibria

in (�; (T �i )i2N ;%R;H) is denoted by NE(�; (T �i )i2N ;%R;H). Also, the set of Nash equi-
librium outcomes in (�; (T �i )i2N ;%R;H) is denoted by NEA(�; (T �i )i2N ;%R;H) = fa 2
Aj9m 2 NE(�; (T �i )i2N ;%R;H) with g(m) = ag.
A message mi 2 Mi is weakly dominated by ~mi 2 Mi at %R;Hi if ( ~mi;m�i) %R;Hi

(mi;m�i) for each m�i 2 M�i and ( ~mi;m�i) �R;Hi (mi;m�i) for some m�i 2 M�i. A
message mi 2 Mi is undominated at %R;Hi if it is not weakly dominated by any mes-
sage in Mi at %R;Hi . A message pro�le m 2 M is an undominated Nash equilibrium in
(�; (T �i )i2N ;%R;H) if for each i 2 N , mi 2 Mi is undominated at %R;Hi and m 2 M is a
Nash equilibrium with partially honest agents in (�; (T �i )i2N ;%R;H). The set of undomi-
nated Nash equilibria in (�; (T �i )i2N ;%R;H) is denoted by UNE(�; (T �i )i2N ;%R;H). Note
that UNE(�; (T �i )i2N ;%R;H) � NE(�; (T �i )i2N ;%R;H). Also, the set of undominated
Nash equilibrium outcomes in (�; (T �i )i2N ;%R;H) is denoted by UNEA(�; (T �i )i2N ;%R;H
) = fa 2 Aj9m 2 UNE(�; (T �i )i2N ;%R;H) with g(m) = ag.
Under Assumption 1 or Assumption 2, the mechanism designer knows that there are

partially honest agents in N but does not know who these agents are. Hence, the mecha-
nism designer needs to cover all feasible cases of partially honest agents to her knowledge.
We amend the standard de�nition of implementation as follows:

De�nition 3. Under Assumption k 2 f1; 2g, a mechanism � doubly implements an SCC
F in Nash equilibria and undominated Nash equilibria with partially honest agents if for
eachR 2 D and eachH 2 Hk, F (R) = NEA(�; (T

�
i )i2N ;%R;H) = UNEA(�; (T �i )i2N ;%R;H

).

3 Main results

We consider su�cient conditions for double implementation with partially honest agents.
For each i 2 N , each Ri 2 Di, and each a 2 A, let L(Ri; a) = fb 2 A j aRibg be the

lower contour set of a 2 A for i 2 N at Ri 2 Di.
An SCC F satis�es Maskin monotonicity if for each R, R0 2 D and each a 2 F (R), if

for each i 2 N , L(Ri; a) � L(R0i; a), then a 2 F (R0). Maskin monotonicity requires that
if an outcome a 2 A is F -optimal at some preference pro�le and the pro�le is then altered
so that in each agent's ordering, the outcome a does not fall below any outcome that was
not below before, then the outcome a remains F -optimal at the new pro�le.

De�nition 4. An SCC F satis�es no veto power if for each i 2 N , each R 2 D, and each
a 2 A if for each j 6= i, L(Rj; a) = A, then a 2 F (R).
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No veto power says that if an outcome a 2 A is at the top of (n�1) agents' preference
orderings, then the last agent cannot prevent the outcome a from being F -optimal at the
preference pro�le.

De�nition 5. An SCC F satis�es unanimity if for each R 2 D and each a 2 A, if for
each i 2 N , L(Ri; a) = A, then a 2 F (R).

Unanimity says that if an outcome a 2 A is at the top of all agents' preference
orderings, then the outcome a is F -optimal at the preference pro�le.
Our main results are as follows:

Theorem 1. Let n � 3.
(1) Under Assumption 1, every SCC F satisfying no veto power can be doubly implemented
with partially honest agents.
(2) Under Assumption 2, every SCC F satisfying unanimity can be doubly implemented
with partially honest agents.

The proof of Theorem 1 is given in Appendix A.

3.1 Related literature

Previous studies provide a necessary condition and a su�cient condition for double im-
plementation under Assumption 0, respectively.

Proposition 1. (Maskin [22], Yamato [28]) Let n � 3 and suppose Assumption 0 holds.
If an SCC F does not satisfy Maskin monotonicity, it cannot be doubly implemented.

Proposition 2. (Jackson et al.[12], Tatamitani[26], and Yamato [27][28]) Let n � 3 and
suppose Assumption 0 holds. Then, every SCC F satisfying Maskin monotonicity and no
veto power can be doubly implemented.

For our results and previous results, we summarize su�cient conditions for double
implementation with partially honest agents under Assumption k 2 f0; 1; 2g in Figure 1
below.

Assumption 0 ! Assumption 1 ! Assumption 2
Nash Maskin [22] Dutta and Sen [5] Kimya [17]

Implementation Maskin monotonicity no veto power unanimity
no veto power

#
Jackson et al.[12] This paper This paper

Double Tatamitani[26] (Theorem 1 (1)) (Theorem 1 (2))
Implementation Yamato [27][28]

Maskin monotonicity no veto power unanimity
no veto power

Figure 1
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The following remark provides a di�culty of double implementability under Assump-
tion 0.

Remark. The strong Pareto correspondence SP satis�es unanimity but violates Maskin
monotonicity and no veto power for some domain:

Strong Pareto correspondence (SP): SP(R) = fa 2 A : @b 2 A such that for each
i 2 N , bRia, and for some i 2 N; bPiag

The following example represents that the strong Pareto correspondence violates Maskin
monotonicity and no veto power.

Example 1. Consider the following example. There are three agents, N = f1; 2; 3g, two
outcomes, A = fa; bg, and two possible preference pro�les, D = fR;R0g. Preferences are
given by:

R1 R2 R3
a; b a b

b a

R1 R2 R3
a; b a a; b

b

The strong Pareto correspondence evaluated at each preference pro�le is as follows:
SP(R) = fa; bg and SP(R0) = fag. Since Maskin monotonicity and no veto power imply
that we must have b 2 SP(R0), the strong Pareto correspondence fails the conditions.
By Proposition 1, the strong Pareto correspondence cannot be doubly implemented

under Assumption 0. On the other hand, since the strong Pareto correspondence satis�es
unanimity, the strong Pareto correspondence can be doubly implemented with partially
honest agents under Assumption 2.�

As one of studies in behavioral mechanism design, Kartik et al.[15] investigate a im-
plementation problem in two rounds of strictly dominated strategies. This is also a study
of double implementation.5 However, there are three di�erences and therefore their re-
sult does not imply ours: First, while they consider a single-valued SCC F , we consider
a set-valued SCC. Second, they assume that there is separable punishment : there are a
function x : �! A, agent i, and agent j 6= i such that for each R;R0 2 D, F (R0)Ijx(R0)
and F (R0)Pix(R

0). Third, if there are at least three agents, the agents except for agent
i 2 N have preferences for honesty on M and the mechanism designer knows that the
other agent has a preference for honesty on M . This is stronger than our assumptions:
Assumption 1 or Assumption 2. Although their mechanism is simpler than ours, they
use a mechanism in which agent i who does not have a preference for honesty on M is a
virtual dictator. Therefore, they consider a problem in which the dictator want to induce
the socially optimal outcome and all the other agents have preferences for honesty so that
the mechanism is applicable for less problems than ours.

4 Implications

In this section, we derive a number of corollaries in problems of allocating an in�nitely
divisible resource, coalitional games, general problems of one-to-one matching, and voting

5I am grateful to Bhaskar Dutta for pointing out this fuct.
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games. Since all SCCs considered here violate Maskin monotonicity, the SCCs cannot be
doubly implemented under Assumption 0 by Proposition 1. On the other hand, by our
results, the SCCs can be doubly implemented with partially honest agents.

4.1 Problems of allocating an in�nitely divisible resource

We consider a problem of allocating an in�nitely divisible resource among a group of
agents. A problem of allocating an in�nitely divisible resource is a triple (N;A(M); R).
The �rst component N = f1; :::; ng with n � 3 is a set of agents among whom an amount
M 2 R++ of an in�nitely divisible resource has to be allocated. Note that we do not
assume that the resource can be disposed of. GivenM 2 R++, an allocation for M is a list
a 2 RN+ such that �i2Nai = M . The second component A(M) = fa 2 RN+ j�i2Nai = Mg
is the set of allocations. The third component R = (R1; :::; Rn) where Ri is a preference
ordering for agent i 2 N over A is a preference pro�le. Let Pi and Ii be the asymmetric
and symmetric components of Ri, respectively.
We consider a situation in which the mechanism designer does not know agents' pref-

erences. This situation is modeled by the triple (N;A;D), which we refer to as a division
problem environment of an in�nitely divisible resource.
In addition to a domain D = R, we focus on domains satisfying the following restric-

tions:

Single-plateaued preferences. Given (Ri;M) 2 Ri � R++, let T (Ri;M) = fa 2
[0;M ]jaRib for each b 2 [0;M ]g be the top set for (Ri;M). Let T (Ri;M) = [T

�
(Ri;M); �T (Ri;M)]

be such that �T(Ri;M) = max T (Ri;M) and T
�
(Ri;M) = min T (Ri;M). A preference or-

dering Ri 2 Ri is single-plateaued on [0;M ] if there is an interval [T
�
(Ri;M); �T (Ri;M)] �

[0;M ] such that for each a; b 2 [0;M ], if b < a �T
�
(Ri;M) or �T(Ri;M) � a < b, then

aPib; if T
�
(Ri;M) � a � b � �T (Ri;M), then aIib. Let DSPLi be the set of single-plateaued

preference orderings on [0;M ] for agent i 2 N and DSPL = �i2NDSPLi be the single-
plateaued domain on [0;M ].

Single-dipped preferences. A preference ordering Ri 2 Ri is single-dipped on [0;M ]
if there is a point d(Ri) 2 [0;M ] such that for each a; b 2 [0;M ], if a < b � d(Ri) or
d(Ri) � b < a, then aPib. Let DSDi be the set of single-dipped preference orderings on
[0;M ] for agent i 2 N and DSD = �i2NDSDi be the single-dipped domain on [0;M ].

Let us give an example of an SCC in a problem of allocating an in�nitely divisible
resource.

Strong Pareto correspondence (SP): SP(R) = fa 2 A(M)j@b 2 A(M) such that for
each i 2 N , biRiai, and for some i 2 N; biPiaig

If D = R or DSPL, it is well-known that the strong Pareto correspondence violates
Maskin monotonicity. If D = DSD, Inoue and Yamamura[11] (Remark 1) show that any
selection from the strong Pareto correspondence does not satisfy Maskin monotonicity.
By Proposition 1, if D = R, DSPL, or DSD, the strong Pareto correspondence cannot be
doubly implemented under Assumption 0.
On the other hand, it is well-known that the strong Pareto correspondence satis�es

unanimity but violates no veto power. We conclude that under Assumption 2, the strong
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Pareto correspondence can be doubly implemented with partially honest agents.

Corollary 1. Let (N;A(M);D) be a division problem environment of an in�nitely di-
visible resource where D = R, DSPL, or DSD. Under Assumption 2, the strong Pareto
correspondence SP can be doubly implemented with partially honest agents.

4.2 Coalitional games

We consider a coalitional game. A coalitional game (N;A;R; v) contains a �nite set of
agents N with n � 3, a non-empty set of outcomes A, a preference pro�le R 2 D, and a
characteristic function v : 2Nnf�g ! 2A, which assigns for each coalition S 2 2Nnf�g a
subset of outcomes.
We consider a situation in which the mechanism designer knows the characteristic

function v, but she does not know agents' preferences. This situation is modeled by the
four-tuple (N;A;D; v), which we refer to as a coalitional game environment.
Let us give an example of an SCC in a coalitional game.
Given a coalitional game (N;A;R; v), an outcome a 2 A is weakly blocked by S if there

is b 2 v(S) such that bRia for each i 2 S, and bPia for some i 2 S.

Strong core correspondence(SC): SC(R) = fa 2 v(N) : a is not weakly blocked by
any coalition Sg

We say that (N;A;D; v) is a coalitional game environment with non-empty strong core
if SC(R) 6= � for each R 2 D.
Lombardi and Yoshihara[19] show that the strong core correspondence does not satisfy

Maskin monotonicity.6 By Proposition 1, the strong core correspondence cannot be doubly
implemented under Assumption 0.
On the other hand, it is well-known that the strong core correspondence satis�es

unanimity but violates no veto power. We conclude that under Assumption 2, the strong
core correspondence can be doubly implemented with partially honest agents.

Corollary 2. Let (N;A;D; v) be a coalitional game environment with non-empty strong
core. Under Assumption 2, the strong core correspondence SC can be doubly implemented
with partially honest agents.

4.3 General problems of one-to-one matching

We consider a general problem of one-to-one matching (S�onmez [25], Ehlers [6]). A
generalized matching problem is a triple (N;S;R). The �rst component N is a �nite
set of agents with n � 3. The second component S = (Si)i2N is a pro�le of subsets
of N with i 2 Si for each i 2 N . The last component R = (R1; :::; Rn) where Ri is
a preference ordering for agent i 2 N over Si is a preference pro�le. Let Pi and Ii be
the asymmetric and symmetric components of Ri, respectively. Let Ri be the set of all
preference orderings for agent i 2 N and R = �i2NRi. Given i 2 N , let ~Ri denote the
set of all preference orderings for agent i under which agent i is indi�erent between at

6Moreover, Lombardia and Yoshihara[19] show that the strong core correspondence can not be imple-
mented in Nash equilibria with partially honest agents under Assumption 1.
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most two distinct assignments and ~R = �i2N ~Ri. Throughout the paper, we �x a domain

D = �i2NDi where Di for each i 2 N such that ~R � D � R.
A matching is a bijection � : N ! N such that each agent i's assignment �(i) belongs

to his set of possible assignments Si. Given T � N , let �(T ) = f�(i)ji 2 Tg denote the
set of assignments of the agents in T at �. LetM denote the set of all matchings. Let
�I denote the matching such that for each i 2 N , �(i) = i. We specify a subset Mf of
M as the set of feasible matchings. We always require that �I 2Mf and for each i 2 N ,
Si = f�(i)j� 2Mfg. In the context of matching problems, the set of allocations A is the
set of feasible matchingsMf .
We consider a situation in which the mechanism designer does not know agents' pref-

erences. This situation is modeled by the triple (N;Mf ;D), which we refer to as a
generalized matching problem environment.
Given a preference ordering Ri of an agent i 2 N , initially de�ned over Si, we extend

it to the set of feasible matchings Mf in the following natural way: agent i prefers
the matching � to the matching �0 if and only if he prefers his assignment under � to
his assignment under �0. Slightly abusing notation, we use the same symbols to denote
preferences over possible assignments and preferences over feasible matchings.
An SCC is a mapping F : D �Mf that speci�es a non-empty subset F (R) � Mf

for each R 2 D.
Let us give an example of an SCC in a generalized matching problem.
A coalition structure is a set T � 2Nnf�g such that for each i 2 N , fig 2 T . Given

R 2 D, T 2 T , and � 2 Mf , we say that coalition T blocks � under R if for some
~� 2Mf , (1) ~�(T ) = T , (2) for each i 2 T , ~�(i)Ri�(i), and (3) for some j 2 T , ~�(i)Pi�(i).

Strong T -core correspondence (SCT ): SCT (R) = f� 2Mf j there is no T 2 T that
blocks � under Rg.

Ehlers [6] shows that the strong T -core correspondence does not satisfy Maskin mono-
tonicity. By Proposition 1, the strong T -core correspondence cannot be doubly imple-
mented under Assumption 0.
On the other hand, it is well-known that the strong T -core correspondence satis�es

unanimity but violates no veto power. We conclude that under Assumption 2, the strong
T -core correspondence can be doubly implemented with partially honest agents.

Corollary 3. Let (N;Mf ;D) be a generalized matching problem environment. Under As-
sumption 2, strong T -core correspondence SCT can be doubly implemented with partially
honest agents.

4.4 Voting games

We consider a voting game. A voting game (N;A;R) contains a �nite set of agents N
with n � 3, a non-empty �nite set of outcomes A, and a preference pro�le R 2 D.
We consider a situation in which the mechanism designer does not know agents' pref-

erences. This situation is modeled by the triple (N;A;D), which we refer to as a voting
game environment.
Let us give an example of an SCC in a voting game.

10



For each R 2 D and each a; b 2 A, we write aD(R)b if a strict majority of agents
prefer a to b.

Top-cycle correspondence (TC): TC(R) = \fB � A j a 2 B; b =2 B implies
aD(R)bg:

Paley and Srivastava[24] show that the top-cycle correspondence does not satisfy
Maskin monotonicity. By Proposition 1, the top-cycle correspondence cannot be doubly
implemented under Assumption 0.
On the other hand, it is well-known that the top-cycle correspondence satis�es no veto

power. We conclude that under Assumption 2, top-cycle correspondence can be partially
honest doubly implemented.

Corollary 4. Let (N;A;D) be a voting game environment. Under Assumption 1, the
top-cycle correspondence TC can be doubly implemented with partially honest agents.

Let us give the other example of an SCC in a voting game.
For each R 2 D, let Bi(a;R) = k if a 2 A is the k0th most preferred outcome.

Borda correspondence (FB): FB(R) = fa 2 A : �i2NB
i(a;R) � �i2NB

i(b; R) for
each b 2 Ag.

The following example represents that the Borda correspondence violates Maskin
monotonicity and no veto power.

Example 5. Consider the following example. There are three agents, N = f1; 2; 3g, two
outcomes, A = fa; b; cg, and two possible preference pro�les, D = fR;R0g. Preferences
are given by :

R1 R2 R3
a b c
b c b
c a a

R01 R02 R03
a a; b; c c
b; c b

a

The Borda correspondence evaluated at each preference pro�le is as follows: FB(R) = fbg
and FB(R

0) = fcg. Since Maskin monotonicity and no veto power imply that we must have
b 2 FB(R0) and a 2 FB(R0), respectively, the Borda correspondence fails the conditions.
By Proposition 1, the Borda correspondence FB cannot be doubly implemented under
Assumption 0.�

On the other hand, it is well-known that the Borda correspondence satis�es unanim-
ity. We conclude that under Assumption 2, the Borda correspondence can be doubly
implemented with partially honest agents.

Corollary 5. Let (N;A;D) be a voting game environment. Under Assumption 2, the
Borda correspondence FB can be doubly implemented with partially honest agents.

11



5 A simple mechanism for double implementation

with socially responsible agents

We have considered a truth-telling correspondence with regard to a preference pro�le
following Dutta and Sen [5]. On the other hand, motivated by some studies (Gneezy[7],
Hurkens and Kartik[10], Matsushima[21], and Do�gan[4]), Hagiwara et al.[8] consider a
truth-telling with regard to an outcome.
They design a simple and natural mechanism for implementation in Nash equilibria

with socially responsible agents which they call the outcome mechanism �O = (M; g).
The message space of agent i 2 N consists of Mi = A�N . Denote an element of Mi by
mi = (a

i; ki). The outcome function g :M ! A is de�ned as follows:

Rule 1 : If there is i 2 N such that for each j 6= i, mj = (a; k
j), then g(m) = a.

Rule 2 : In all other cases, g(m) = ai
�
, where i� = (�i2Nk

i)(mod n) + 1.

In the outcome mechanism, the mechanism designer expects each agent to report a
socially desirable outcome. Then, some agent may strictly prefer to report a socially
desirable outcome at the true preference pro�le to the mechanism designer whenever an-
nouncing a socially undesirable outcome does not change the outcome to a more preferred
outcome. They call such an agent a socially responsible agent. Given an SCC F , let %F (R)i

be a preference ordering for agent i 2 N over M at F (R), whose asymmetric and sym-

metric components are �F (R)i and �F (R)i , respectively.

De�nition 6. An agent i 2 N is socially responsible if for each R 2 R and each
(mi;m�i); (m

0
i;m�i) 2M such that mi = (a

i; ki) and m0
i = (a

0i; k0i), the following proper-
ties hold:
(1) If ai 2 F (R), a0i =2 F (R), and g(mi;m�i)Rig(m

0
i;m�i), then (mi;m�i) �F (R)i (m0

i;m�i).

(2) In all other cases, (mi;m�i) %F (R)i (m0
i;m�i) if and only if g(mi;m�i)Rig(m

0
i;m�i).

We consider the following assumption:

Assumption n. There are n socially responsible agents in N .7

Let (�O;%F (R)) be a game with socially responsible agents induced by the outcome
mechanism �O and a preference pro�le %F (R).

De�nition 3. Under Assumption n, a mechanism � doubly implements an SCC F with
socially responsible agents if for eachR 2 D, F (R) = NEA(�O;%F (R)) = UNEA(�O;%F (R)
).

We show that if an SCC F is single-valued, the outcome mechanism �O doubly im-
plements F satisfying unanimity with socially responsible agents.

Theorem 2. Under Assumption n, the outcome mechanism �O doubly implements any
single-valued SCC F satisfying unanimity with socially responsible agents.

The proof of Theorem 2 is given in Appendix B.

7Some studies such as Kimya [17] introduce Assumption n for partially honest agents.
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5.1 Related literature

For Nash implementation with socially responsible agents, Hagiwara et al.[8] provide the
following result under the assumptions:

Assumption 1. There exists at least one socially responsible agent in N .
Assumption 2. There are at least two socially responsible agents in N .

Proposition 3. (Hagiwara et al.[8]) Let n � 3.
(1) Under Assumption 1, the outcome mechanism �Oimplements F satisfying no veto
power in Nash equilibria with socially responsible agents.
(2) Under Assumption 2, the outcome mechanism �Oimplements F satisfying unanimity
in Nash equilibria with socially responsible agents.

The following example shows that if jF (R)j > 1 for some R 2 D, the outcome mech-
anism cannot doubly implement the SCC F with socially responsible agents.

Example 3. Consider the following example. There are three agents, N = f1; 2; 3g such
that all agents are socially responsible, three outcomes, A = fa; b; cg, and two admissible
preference pro�les, D = fR;R0g. Preferences are given by:

R1 R2 R3
a c c
b; c b b

a a

R01 R02 R03
a c c
b a b
c b a

De�ne the SCC F as follows: F (R) = fa; bg, and F (R0) = fag. Note that the SCC F
satis�es unanimity, so that by Proposition 3 (2), the SCC can be implemented in Nash
equilibria with socially responsible agents by their outcome mechanism under Assumption
2.
There exist two Nash equilibrium outcomes in (�O;%F (R)), a and b. However, it is

easy to see that m1 = (b; k
1) is weakly dominated by m0

1 = (a; k
1) at %F (R)1 . Therefore,

F (R) = fa; bg = NEA(�O;%F (R)) but UNEA(�O;%F (R)) = fag.�

We give an example to show that in the outcome mechanism, even if two agents are
socially responsible, there may be Nash equilibrium outcomes in which agents use weakly
dominated messages, and hence the set of undominated Nash equilibrium outcomes may
be a proper subset of the set of Nash equilibrium outcomes. Although Assumption n is
stronger, the outcome mechanism solves some problems with respect to Dutta and Sen's
mechanism such as the assumption of complete information.8

Example 4. Consider the following example. There are three agents, N = f1; 2; 3g such
that agent 2 and agent 3 are socially responsible, three outcomes, A = fa; b:cg, and two
admissible preference pro�les, D = fR;R0g. Preferences are given by:

8Hagiwara et al.[8] show that in Example, as long as an event is common knowledge, all agents can
commonly know the set of Nash equilibria. See Hagiwara et al.[8].
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R1 R2 R3
a c c
b b b
c a a

R01 R02 R03
a c c
b a b
c b a

De�ne the SCC F as follows: F (R) = fcg, and F (R0) = fag. Note that the SCC F
satis�es unanimity, so that by Proposition 3 (2), the SCC can be implemented in Nash
equilibria with socially responsible agents by their outcome mechanism under Assumption
2.
There exists a unique Nash equilibrium outcome with socially responsible agents in

(�O;%F (R)), c. If mi = (c; k
i) for each i 2 N , m 2 NE(�O;%F (R)) and it is easy to see

that the message m2 and m3 is not weakly dominated by any message in M2 and M3 at
%R;H2 and %R;H3 , respectively. On the other hand, it is easy to see that m1 = (c; k1) is
weakly dominated by m0

1 = (a; k
1) at %R;H1 . Therefore, F (R) = fcg = NEA(�O;%F (R))

but UNEA(�
O;%F (R)) = ;.�

For our result and a previous result in which we focus on single-valued SCCs, we
summarize su�cient conditions for double implementation with socially responsible agents
under Assumption k 2 f1; ng in Figure 2 below.

Assumption 1 ! Assumption n
Nash Hagiwara et al.[8] Hagiwara et al.[8]

Implementation no veto power unanimity
#

Double This paper (Example 4) This paper (Theorem 2)
Implementation � unanimity

Figure 2

This setting is similar to that of Kartik et al.[15], but not same: while they consider
a problem in which the dictator strictly prefers the socially optimal outcome and all the
other agents have preferences for honesty, we assume that all agents just want to report
the socially optimal outcome. Therefore, we can apply to more problems than Kartik et
al.[15] because we do not use an assumption of preferences on A. Moreover, they assume
that any agent can observe all the other agents' preferences. However, in the outcome
mechanism, the complete information assumption can be weakened.

6 Appendix A

Proof of Theorem 1 (1): Let F be an SCC satisfying no veto power. We construct
a mechanism � = (M; g). For each i 2 N , the message space of agent i 2 N consists of
Mi = D�A�A�f�n; :::;�1; 0; 1; :::; ng. Denote an element ofMi by mi = (R

i; ai; bi; ki).
For each agent i 2 N and each Ri 2 Di; de�ne �b(Ri) and b

�
(Ri) as follows: (1) if there

exist b; c 2 A such that bPic; then let �b(Ri) = b and b
�
(Ri) = c; (2) otherwise, pick any

b; c 2 A with b 6= c; let �b(Ri) = b and b
�
(Ri) = c.

The outcome function g :M �! A is de�ned as follows:

14



Rule 1 : If there exists i 2 N such that for each j 6= i, mj = (R; a; �; j) where a 2 F (R),
then g(m) = a.

Rule 2 : If there exists i 2 N such that for each j 6= i, mj = (R; a; �;�i) where a 2 F (R),
then

g(m) =

(
�b(Ri) if mi = (R; a;�b(Ri); i)

b
�
(Ri) if mi 6= (R; a;�b(Ri); i) with ki � 0 or ki = i:

Rule 3 : In all other cases, g(m) = ai� , where i� = (�i2N maxf0; kig)(mod n) + 1:

For each i 2 N and each R 2 D, a truth-telling correspondence is de�ned by
T �i (R;F ) = fRg � A� A� f�n; :::;�1; 0; 1; :::; ng.
The proof consists of three lemmata.

Lemma 1. Let R 2 D; H 2 H1, and a 2 F (R) be given. If for each i 2 N ,
mi = (R; a;�b(Ri); i), then m 2 NE(�; (T �i )i2N ;%R;H).

Proof: For each i 2 N , let mi = (R; a;�b(Ri); i). By Rule 1, g(m) = a. No uni-
lateral deviation can change the outcome and mi 2 T �i (R) for each i 2 N . Hence,
m 2 NE(�; (T �i )i2N ;%R;H).�

Lemma 2. Let R 2 D; H 2 H1, and a 2 F (R) be given. For each i 2 N , mi =
(R; a;�b(Ri); i) is undominated at %R;Hi .

Proof: First, suppose that there exist b; c 2 A with bPic: Then, �b(Ri)Pib
�
(Ri). We show

that for each ~mi 6= mi; there exists ~m�i 2M�i such that (mi; ~m�i) �R;Hi ( ~mi; ~m�i). There
are two cases to consider.

Case 1. ~ki � 0 or ~ki = i.
For each j 6= i, let ~mj = (R; a; �;�i). By Rule 2, g(mi; ~m�i) =�b(Ri) and g( ~mi; ~m�i) =b

�
(Ri),

so that (mi; ~m�i) �R;Hi ( ~mi; ~m�i).

Case 2. ~ki > 0 and ~ki 6= i.
De�ne ~m�i 2 M�i as follows: for some j 6= i, ~mj = (R0; a0;b

�
(Ri); j � 1); for some

h 6= i; j; ~mh = (R
00; a00;b

�
(Ri); ~k

h); and for any other `, ~m` = (�; �;b
�
(Ri); ~k

`), where (R; a) 6=
(R0; a0) 6= (R00; a00) and (�h 6=i;j~kh + i+ j � 1)(mod n) + 1 = i with ~kh � 0 for h 6= i; j. By
Rule 3, g(mi; ~m�i) =�b(Ri) and g( ~mi; ~m�i) =b

�
(Ri), so that (mi; ~m�i) �R;Hi ( ~mi; ~m�i).

Next, suppose that for each b; c 2 A; bIic: Obviously, mi is undominated at %R;Hi .�

Lemma 3. For each R 2 D and each H 2 H1, NEA(�; (T
�
i )i2N ;%R;H) � F (R):

Proof: There are two cases to consider.

Case 1. For each i 2 N , mi = (R
0; a; �; i) such that R0 6= R and a 2 F (R0).

We show that if g(m) =2 F (R), then m =2 NE(�; (T �i )i2N ;%R;H). Under Assumption
2, there exists a partially honest agent h 2 H. Let m0

h = (R; a0h; b
0h; k0h). By the

de�nition of the truth-telling correspondence, mh =2 T �h (R) and m0
h 2 T �h (R). By Rule 1,

g(m0
h;m�h) = a so that g(m

0
h;m�h) = g(m). Since h 2 H, (m0

h;m�h) �R;Hh (mh;m�h).
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Hence, m =2 NE(�; (T �i )i2N ;%R;H).

Case 2. There are i; j 2 N (i 6= j) such that Ri 6= Rj.
Let the outcome be some b 2 A. Then, any one of (n � 1) agents can deviate,

precipitate the modulo game, and be the winner of the modulo game. Clearly, if the
original announcement is to be a Nash equilibrium with partially honest agents, then it
must be the case that L(Ri; b) = A for (n � 1) agents. Then since F satis�es no veto
power, b 2 F (R).�

Proof of Theorem 1 (2): Let F be an SCC satisfying unanimity. We use the same
mechanism � = (M; g) as the proof of Theorem 1 (1) and for each i 2 N and each R 2 D,
a truth-telling correspondence is de�ned by T �i (R) = fRg�A�A�f�n; :::;�1; 0; 1; :::; ng.
The proof consists of three lemmata.

Lemma 4. Let R 2 D; H 2 H2, and a 2 F (R) be given. If for each i 2 N , mi =
(R; a;�b(Ri); i), then m 2 NE(�; (T �i )i2N ;%R;H).

Lemma 5. Let R 2 D; H 2 H2, and a 2 F (R) be given. For each i 2 N , mi =
(R; a;�b(Ri); i) is undominated at %R;Hi .

The proof of Lemma 4 and Lemma 5 are omitted. It follows from the same reasoning
as Lemma 1 and Lemma 2, respectively.

Lemma 6. For each R 2 D and each H 2 H2, NEA(�; (T
�
i )i2N ;%R;H) � F (R).

Proof: We show that if g(m) =2 F (R), then m =2 NE(�; (T �i )i2N ;%R;H). There are four
cases to consider.

Case 1. For each i 2 N , mi = (R
0; a; �; i) such that R0 6= R and a 2 F (R0).

By the same argument as Case 1 of Lemma 3, m =2 NE(�; (T �i )i2N ;%R;H).

Case 2. There is i 2 N such that for each j 6= i, mj = (R
0; a; �; j) such that R0 6= R and

a 2 F (R0), and mi 6= (R0; a; �; i).
By Rule 1, g(m) = a 2 F (R0) such that R0 6= R. Under Assumption 2, since jHj � 2

there exists a partially honest agent h 2 Hnfig.9 Without loss of generality, let i = 1
and h = 2. Let m0

2 = (R; a
02; b

02; k02) be such that (�j 6=2k
j + k02)(mod n) + 1 = 3. By the

de�nition of the truth-telling correspondence, m2 =2 T �2 (R) and m0
2 2 T �2 (R). By Rule

3, g(m0
2;m�2) = a3 = a so that g(m0

2;m�2) = g(m). Since agent 2 is partially honest,
(m0

2;m�2) �R;H2 (m2;m�2). Hence, m =2 NE(�; (T �i )i2N ;%R;H).

Case 3. Rule 2 is applied.
Suppose g(m) =2 F (R). Since F satis�es unanimity, there is ` 2 N and b 2 A such

that bP`g(m). Suppose ` = i. Let m
0
i = (�; �; b; i� 1) if i 6= 1 and m0

i = (�; �; b; n) if i = 1.
By Rule 3, g(m0

i;m�i) = b so that g(m
0
i;m�i)Pig(m). Otherwise (i.e. ` 6= i), if agent `

deviate to m0
` = (�; �; b; k0`) 6= m` such that (�j 6=`k

j + k0`)(mod n) + 1 = `, then by Rule

9Note that under Assumption 1, there is no partially honest agent in Nnfig when jHj = 1 and agent
i is partially honest.
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3, g(m0
`;m�`) = b so that g(m

0
`;m�`)P`g(m). Whether agent ` is partially honest or not,

(m0
`;m�`) �R;H` (m`;m�`). Hence, m =2 NE(�; (T �i )i2N ;%R;H).

Case 4. Rule 3 is applied.
Suppose g(m) =2 F (R). Since F satis�es unanimity, there is i 2 N and b 2 A such

that bPig(m). Let m
0
i = (�; �; b; k0i) 6= mi be such that (�j 6=ik

j + k0i)(mod n) + 1 = i. By
Rule 3, g(m0

i;m�i) = b so that g(m
0
i;m�i)Pig(m). Whether agent i is partially honest or

not, (m0
i;m�i) �R;Hi (mi;m�i). Hence, m =2 NE(�; (T �i )i2N ;%R;H).�

7 Appendix B

Proof of Theorem 2: Let F be an single-valued SCC satisfying unanimity. For each
R 2 R, let a 2 A be such that F (R) = fag.
The proof consists of three lemmata.

Lemma 7. If for each i 2 N , mi = (a; k
i), then m 2 NE(�O;%F (R)).

Proof: For each i 2 N , let mi = (a; k
i). By Rule 1, g(m) = a. No unilateral deviation

can change the outcome and ai = a 2 F (R) for each i 2 N . Hence, m 2 NE(�O;%F (R)).�

Lemma 8. For each i 2 N , mi = (a; k
i) is undominated at %F (R)i .

Proof: First, suppose that there exist b; c 2 A with bPia and bPic. We show that for
each ~mi 6= mi; there exists ~m�i 2 M�i such that (mi; ~m�i) �F (R)i ( ~mi; ~m�i). There are
two cases to consider.

Case 1. ~mi = (b; �) such that b 6= a.
For each j 6= i, let ~mj = (b; �) By Rule 1, g(mi; ~m�i) = g( ~mi; ~m�i) = b. Since a 2 F (R)

and b =2 F (R), (mi; ~m�i) �F (R)i ( ~mi; ~m�i).

Case 2. ~mi = (a; ~k
i) such that ~ki 6= ki.

De�ne ~m�i 2 M�i as follows: for some j 6= i, ~mj = (b; �k
j), and for any other h 6= i; j;

~mh = (c; �k
h), where b 6= c and (�j 6=i~kj + ki)(mod n) + 1 = j. By Rule 3, g(mi; ~m�i) = b

and g( ~mi; ~m�i) = a or c, so that (mi; ~m�i) �F (R)i ( ~mi; ~m�i).

Next, suppose that for each b; c 2 A; bIic or a 2 L(Ri; a) = A. Obviously, mi is

undominated at %F (R)i .�

Lemma 9. For each R 2 D, NEA(�O;%F (R)) � F (R):

Proof: We show that if g(m) =2 F (R), then m =2 NE(�O;%F (R)). There are two cases to
consider.

Case 1. For each b 6= a, Rule 1 is applied.
By Rule 1, g(m) = b. Let m0

i = (a; �). By Rule 1, g(m0
i;m�i) = b so that g(m

0
i;m�i) =

g(m). Since i is a socially responsible agent, (m0
i;m�i) �F (R)i (mi;m�i). Hence, m =2

NE(�O;%F (R)).
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Case 2. In all other cases, Rule 2 is applied.
Suppose g(m) =2 F (R). Since F satis�es unanimity, there is i 2 N and b 2 A such

that bPig(m). Let m
0
i = (b; k

0i) 6= mi be such that (�j 6=ik
j + k0i)(mod n)+ 1 = i. By Rule

2, g(m0
i;m�i) = b so that g(m0

i;m�i)Pig(m). Then, (m
0
i;m�i) �F (R)i (mi;m�i). Hence,

m =2 NE(�O;%F (R)).�
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